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1 INTRODUCTION

The streaming instability is a promising mechanism to drive plan-
etesimal formation. Since its discovery (Youdin & Goodman 2005),
several hydrodynamics codes have explored the parameters, non-
linear properties, and implications of this aerodynamic instability
that requires feedback between dust and gas momenta. However, the
nontrivial differences between numerical techniques (e.g., finite dif-
ference or finite volume) and dust modeling (e.g., as a pressureless
fluid or as Lagrangian particles) can make it difficult to disentangle
unique scientific results from the potential idiosyncrasies of a par-
ticular code or implementation. In an effort to address these issues,
this collaborative project aims to comprehensively compare various
multipurpose codes across some of the key models and problems
previously studied in investigations into the streaming instability.

1.1 Repositories

1.1.1 Figure scripts and source codes

Figure scripts and source code files related to this project can be
found in the pfitsplus/sicc GitHub repository. For more information,
please see the repository README.

1.1.2 Output data

The problem data outputted by the contributing codes must be up-
loaded to the designated Google Shared Drive. Anyone with the link
can view and comment on the contents, but please contact Stanley A.
Baronett (barons2@unlv.nevada.edu) to request access to add files.
To be consistent with the structure of this document (Section 1.2),
the subdirectories therein are hierarchically organized first bymodel,
next by problem, next by variation, and last by code. Regardless of the
inherent data format normally generated by a contributing code, all
requested output (e.g., arrays) must be stored in or converted to com-
pressed NumPy .npz files using the numpy.savez_compressed()
function (see the NumPy Manual for details). All quantities, includ-
ing times and coordinates, must be saved in the units specified by
each problem, as detailed in later sections (e.g., Section 2.2.1; see
Section 1.2 for document structure). The .npz files must be named
and structured as follows.
Snapshots must be named as the corresponding simulation time

without leading zeros, with the initial snapshot at 𝑡sim = 0 named
0.npz. Each snapshot must contain the cell-centered coordinates
as separate 1D arrays for each axis using the keyword arguments
(**kwds) x, y, and/or z. The requested quantities within each snap-
shot must also be stored in individual 2D or 3D arrays using the
keyword arguments specified by each problem or variation (e.g.,
rhop for the particle density).

Time series data must be saved as time_series.npz and contain
individual arrays with keyword arguments t (for the corresponding
simulation times) and those specified by each problem or variation
for the requested quantities (e.g., maxrhop for the maximum particle
density). The requested cadence (i.e. time increment between outputs
d𝑡) for the time series is also specified by each problem or variation.

1.2 Document structure

The subsequent structure of this document is as follows. The sec-
tions themselves (e.g., Section 2) correspond to particular models
with different source terms (e.g., unstratified vs. stratified). Within
each section, the first subsection (e.g., Subsection 2.1) explains the
setup and relevant quantities for the corresponding model. The sec-
ond subsection (e.g., Subsection 2.2) identifies the specific problems
of interest, the relevant variations of parameter values, and the cor-
responding objectives for the code comparison.

2 UNSTRATIFIED

As detailed in Baronett et al. (2024, sec. 2), the unstratified problems
are modeled without the vertical component of stellar gravity in the
local-shearing-box approximation (Goldreich & Lynden-Bell 1965),
where the equations of motion are linearized with Cartesian 𝑥, 𝑦, and
𝑧 axes constantly aligned to the radial, azimuthal, and vertical direc-
tions, respectively. The Keplerian reference frame is axisymmetric
with periodic boundary conditions in all directions.

2.1 Model setup

2.1.1 Gas

From Baronett et al. (2024, sec. 2.1), the continuity and momentum
equations for the inviscid gas (𝜈 = 0) are

𝜕𝜌g
𝜕𝑡

+ ∇ · (𝜌gu) = 0, (1)

𝜕𝜌gu
𝜕𝑡

+ ∇ · (𝜌guu + 𝑃I)

= 𝜌g

[
2ΩK𝑢𝑦 x̂ − 1

2
ΩK𝑢𝑥 ŷ + 2ΩKΠ𝑐sx̂ −

𝜌p
𝜌g

(
u − v
𝑡stop

)]
, (2)

respectively. In solving for the gas density 𝜌g, the gas velocity u
is measured relative to the background Keplerian shear flow u′ =

−(3/2)ΩK𝑥ŷ, where ΩK is the local Keplerian angular frequency.
In equation (2), 𝑃 = 𝜌g𝑐2s for an isothermal equation of state with
sound speed 𝑐s, and I is the identity matrix. The first two source
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terms on the right-hand side of equation (2) are a combination of the
radial component of stellar gravity and the Coriolis and centrifugal
forces. The third term is a constant outward force on the gas due to an
external radial pressure gradient, determined by the dimensionless
parameter (Bai & Stone 2010, eq. 1)

Π ≡ 𝜂𝑣K
𝑐s

=
𝜂𝑟

𝐻g
= 0.05, (3)

where 𝑣K is the local Keplerian velocity, 𝐻g = 𝑐s/ΩK is the vertical
gas scale height, and

𝜂 ≡ −1
2

1
𝜌gΩ2K𝑟

𝜕𝑃

𝜕𝑟
= −1
2

(
𝐻g
𝑟

)2
𝜕 ln 𝑃
𝜕 ln 𝑟

∼
(
𝑐s
𝑣K

)2
, (4)

is the fractional reduction in orbital speed of the gas from Keplerian
(when 𝜂 > 0) if the dust were not present (Nakagawa et al. 1986,
eq. 1.9). The fourth and final term is the frictional drag force from the
solid particles back to the gas, where v is the ensemble-averaged local
velocity of the particles (measured relative to the background shear)
and 𝑡stop is their stopping time. The factor of the dust-to-gas density
ratio 𝜌p/𝜌g ensures the conservation of the total linear momentum
of the gas and dust particles, where 𝜌p is the spatially averaged dust
density in the gas cell.
The gas density field is initially uniform with 𝜌g (𝑥, 𝑦, 𝑧, 𝑡 = 0) =

𝜌g,0. By assuming a total dust-to-gas mass ratio

𝜖 ≡
⟨𝜌p⟩
𝜌g,0

, (5)

where

⟨ 𝑓 ⟩ ≡ 1
𝐿𝑥𝐿𝑦𝐿𝑧

∭
𝑓 d𝑥d𝑦d𝑧 (6)

is the instantaneous volume average of quantity 𝑓 over the computa-
tional domain of dimensions 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 , the initial components
of the gas velocity take the equilibrium solution by Nakagawa et al.
(1986):

𝑢𝑥,0 = −𝜖𝑣𝑥,0, (7)

𝑢𝑦,0 = −
[
1 +

𝜖𝜏2s
(1 + 𝜖)2 + 𝜏2s

]
𝜂𝑣K
1 + 𝜖

, (8)

𝑢𝑧,0 = 0, (9)

where

𝜏s ≡ ΩK𝑡stop. (10)

is the dimensionless stopping time (a.k.a. Stokes number; Youdin &
Goodman 2005).

2.1.2 Lagrangian dust particles

From Baronett et al. (2024, sec. 2.2), the dust is modeled as La-
grangian super-particles, each of which represents an ensemble of
numerous identical solid particles described by their total mass and
average velocity. The equations of motion for the 𝑖-th super-particle
is then
dxp,𝑖
d𝑡

= v𝑖 −
3
2
ΩK𝑥p,𝑖 ŷ, (11)

dv𝑖
d𝑡

= 2ΩK𝑣𝑖,𝑦 x̂ − 1
2
ΩK𝑣𝑖,𝑥 ŷ − v𝑖 − u

𝑡stop
, (12)

where the velocity v𝑖 is measured relative to the background Keple-
rian shear v′

𝑖
= −(3/2)ΩK𝑥p,𝑖 ŷ. The right-hand side of equation (12)

parallels equation (2) in Lagrangian form without the radial gas
pressure gradient. The gas velocity u is interpolated at the particle
position xp,𝑖 using the Triangular-Shaped-Cloud scheme under the
standard particle–mesh method (Hockney & Eastwood 1981). For
a monodisperse population of dust, the stopping times 𝑡stop and 𝜏s
(equation 10) are the same for all particles. As with the gas (equa-
tions 7– 9), the initial components of the particle velocity take the
equilibrium solution by Nakagawa et al. (1986):

𝑣𝑖,𝑥,0 = −
[

2𝜏s
(1 + 𝜖)2 + 𝜏2s

]
𝜂𝑣K, (13)

𝑣𝑖,𝑦,0 = −
[
1 −

𝜏2s
(1 + 𝜖)2 + 𝜏2s

]
𝜂𝑣K
1 + 𝜖

, (14)

𝑣𝑖,𝑧,0 = 0. (15)

2.1.3 Pressureless dust fluid

From Youdin & Johansen (2007, sec. 2.1.1), the continuity and mo-
mentum equations for the inviscid (𝜈 = 0) and pressureless dust fluid
are
𝜕𝜌d
𝜕𝑡

+ ∇ · (𝜌dv) = 0, (16)

𝜕𝜌dv
𝜕𝑡

+ ∇ · (𝜌dvv + 𝑃I)

= 𝜌d

[
2ΩK𝑣𝑦 x̂ − 1

2
ΩK𝑣𝑥 ŷ − 1

𝜌d

(
v − u
𝑡stop

)]
, (17)

respectively. Solving for the dust density 𝜌d, the dust velocity
v is measured relative to the background Keplerian shear flow
v′ = −(3/2)ΩK𝑥ŷ. The right-hand side of equation (17) parallels
equation (2) without the radial gas pressure gradient. As with the gas
(equations 7– 9), the initial components of the dust velocity take the
equilibrium solution by Nakagawa et al. (1986):

𝑣𝑥,0 = −
[

2𝜏s
(1 + 𝜖)2 + 𝜏2s

]
𝜂𝑣K, (18)

𝑣𝑦,0 = −
[
1 −

𝜏2s
(1 + 𝜖)2 + 𝜏2s

]
𝜂𝑣K
1 + 𝜖

, (19)

𝑣𝑧,0 = 0. (20)

2.2 Problems

As in Johansen & Youdin (2007), the problems in the subsections
below are intended to study the nonlinear saturation of the unstrat-
ified streaming instability. The requested output data must include
simulation snapshots and a time series (see Section 1.1.2 for format-
ting and submission details). The grid coordinates must be in units
of the vertical gas scale height 𝐻g, and times must in units of the
local orbital period

𝑇 ≡ 2𝜋/ΩK. (21)

Snapshots must contain the dust density field in units of the ini-
tially uniform gas density, i.e. 𝜌p (𝑥/𝐻g, 𝑧/𝐻g)/𝜌g,0 (defined in Sec-
tion 2.1.1), stored with the keyword argument rhop. The parameter
values for the following problems and the requested output for their
associated variations are summarized in Table 1.
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Table 1. Parameters for the unstratified problems and their variations (Section 2.2). The columns are (1) problem name, (2) dimensionless stopping timea, (3)
total dust-to-gas mass ratiob, (4) domain size, (5) snapshot times, (6) snapshot keywords, (7) time series cadence, (8) time series keywords, (9) grid resolution,
and (10) average number of Lagrangian particles per cell. Length, time, and density are in units of the gas scale height 𝐻g, orbital period 𝑇c, and initially
uniform gas density 𝜌g,0, respectively.

Problem 𝜏s 𝜖 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 Snapshots Time series 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 𝑛p
(𝐻g) 𝑡sim/𝑇 keywords d𝑡/𝑇 keywords

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

BA 1.0 0.2 2.0 0, 5, 10, 20, 50, 100 rhop 0.1 maxrhop
512 × 1 × 512 1, 9
1024 × 1 × 1024 1

a Defined by equation (10)
b Defined by equation (5)
c Defined by equation (21)

2.2.1 BA

This problemand its associated variations are based on run “BA” from
Johansen & Youdin (2007). As key parameters, 𝜏s = 1.0, and 𝜖 = 0.2
as defined by equations (10) and (5), respectively. The local-shearing-
box (Section 2) domain size is 𝐿𝑥×𝐿𝑦×𝐿𝑧 = 2𝐻g×2𝐻g×2𝐻g. Dust
density snapshots must be taken at 𝑡sim/𝑇 = 0, 5, 10, 20, 50, and 100
and must be mapped to the gas grid by particle–mesh assignment for
Lagrangian codes (Section 2.1.2). The time series must include the
maximumparticle density in units of the initially uniform gas density,
i.e. max(𝜌p)/𝜌g,0, stored with the keyword argument maxrhop at a
cadence of d𝑡 = 0.1𝑇 .
Two variations at grid resolutions of 𝑁𝑥 ×𝑁𝑦×𝑁𝑧 = 512×1×512

and 1024 × 1 × 1024 must be submitted as separate runs. Codes that
implement a pressureless dust fluid (Section 2.1.3) must initially
perturb the fluid with Gaussian noise at 1% of the sound speed for
all velocities, i.e. dv = 0.01𝑐s. Codes that implement Lagrangian
dust particles (Section 2.1.2) must use a total number of particles,
which are randomly distributed throughout the domain, such that
there is 𝑛p = 1 particle per cell on average. For the 5122 resolution
specifically, an additional sub-variation must have 𝑛p = 9.
These parameter values and their associated variations are included

in Table 1. The code comparison objectives for this problem and
its variations include comparing morphologies, maximum density
evolution, and cumulative distribution functions.
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APPENDIX A: PENDING

The following sections are works in progress, some of which may be
included in the main text above in future revisions of this document.

APPENDIX B: UNSTRATIFIED

B1 Problems

B1.1 AB

Unstratified monodisperse streaming instability. This is run “AB” of
Johansen & Youdin (2007).
The boxmust have dimensions 𝐿𝑥 = 𝐿𝑧 = 0.1𝐻×0.1𝐻, resolution

is 1024 × 1024, Stokes number St = 0.1, dust-to-gas ratio 𝜀 = 1,
number of particles: 4 particle per cell (4,194,304 particles).
20 snapshots taken between 0 and 2 (on intervals of 0.1) orbits and

single snapshots at 3 and 4 orbits (units of 2𝜋/Ω). Snapshots must
contain densities and velocities for the gas and particles, as well as
the particle positions (can be separate snapshots).
Submit the results as numpy savez files (.npz), containing, respec-

tively

(i) a file with the grid arrays, x and z
(ii) files with the particle density for each snapshot;
(iii) the particle positions for each snapshot;
(iv) time series (with 𝑑𝑡 = 0.01 orbits), containing the time and

the particle and gas density and velocity dispersions, as defined by
equations 10 and 11 of Baronett et al. (2024, sec. 3.1).

Objective: compare dispersions, cumulative distribution function,
and morphological evolution.

B1.2 lin A

Linear, unstratified monodisperse streaming instability. This is run
“lin A” of Youdin & Johansen (2007).
TO DO
Objective: reduce nonlinearity of initial conditions, identify close

to pure code comparisons.

APPENDIX C: STRATIFIED

C1 2D

C1.1 Lagrangian dust particles

Clumping threshold for streaming instability. This is run Z0.4t30 of
Li & Youdin (2021).
The boxmust have dimensions 𝐿𝑥 = 𝐿𝑧 = 0.8𝐻×0.4𝐻, resolution

is 1024 × 512, Stokes number St = 0.3, dust-to-gas ratio 𝑍 = 0.01.
Number of particles must be 4 particles per cell, but considering

the effective particle scale height (𝐻𝑝 ≈ 0.1𝐻 ≈ 2𝜂𝑟). ForΠ = 0.05,
that’s 262,144 particles.
Vertical boundary condition: reflective (zero normal velocity 𝑢𝑧 ,

zero gradient for 𝑢𝑥 and 𝑢𝑦).
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Initial condition: Gaussian for gas density, particles settled with
particle scale height 𝐻𝑝 = 0.025.
Snapshots taken at 5, 10, 20, 50, 100 orbits (units of 2𝜋/Ω).

Snapshots must contain particle density and particle positions. Time
series of maximum particle density.

Objective: Do codes agree on clumping?

C1.2 Pressureless dust fluid

Same as Problem 3A but for fluid. Start fluid with Gaussian noise at
1% of sound speed for all velocities.

C2 3D

3D Streaming Instability. This is a 3D extension of Problem 4A (with
higher Z also, for shorter computation time).
The box must have dimensions 𝐿𝑥 = 𝐿𝑧 = 0.8𝐻 × 0.4𝐻 × 0.4𝐻,

resolution is 1024 × 512 × 512, Stokes number St = 0.3, dust-to-gas
ratio 𝑍 = 0.01, number of particles: 𝑁𝑤 × Π = 13, 421, 772.
Vertical boundary condition: reflective (zero normal velocity 𝑢𝑧 ,

zero gradient for 𝑢𝑥 and 𝑢𝑦).
Initial condition: Gaussian for gas density, particles settled with

particle scale height 𝐻𝑝 = 0.025.
Midplane and vertical slice of particle density at 2, 5, 10, and

20 orbits. Full datacube at 20 orbits (units of 2𝜋/Ω). Snapshots
must contain particle density and particle positions. Time series of
maximum particle density.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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